EconPapers    
Economics at your fingertips  
 

Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model

Z. El Ouaaid, A. Shirazi-Adl, N. Arjmand and A. Plamondon

Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 1, 54-65

Abstract: To circumvent the existing shortcoming of optimisation algorithms in trunk biomechanical models, both agonist and antagonist trunk muscle stresses to different powers are introduced in a novel objective function to evaluate the role of abdominal muscles in trunk stability and spine compression. This coupled objective function is introduced in our kinematics-driven finite element model to estimate muscle forces and to identify the role of abdominal muscles in upright standing while lifting symmetrically a weight at different heights. Predictive equations for the compression and buckling forces are developed. Results are also compared with the conventional objective function that neglects abdominal muscle forces. An overall optimal solution involving smaller spinal compression but higher trunk stability is automatically attained when choosing muscle stress powers at and around 3. Results highlight the internal oblique muscle as the most efficient abdominal muscle during the tasks investigated. The estimated relative forces in abdominal muscles are found to be in good agreement with the respective ratios of recorded electromyography activities.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.607441 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:1:p:54-65

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2011.607441

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:16:y:2013:i:1:p:54-65