EconPapers    
Economics at your fingertips  
 

A methodological approach for the biomechanical cause analysis of golf-related lumbar spine injuries

Taeyong Sim, Dong-Jin Jang and Euichaul Oh

Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 16, 1801-1808

Abstract: A new methodological approach employing mechanical work (MW) determination and relative portion of its elemental analysis was applied to investigate the biomechanical causes of golf-related lumbar spine injuries. Kinematic and kinetic parameters at the lumbar and lower limb joints were measured during downswing in 18 golfers. The MW at the lumbar joint (LJ) was smaller than at the right hip but larger than the MWs at other joints. The contribution of joint angular velocity (JAV) to MW was much greater than that of net muscle moment (NMM) at the LJ, whereas the contribution of NMM to MW was greater rather than or similar to that of JAV at other joints. Thus, the contribution of JAV to MW is likely more critical in terms of the probability of golf-related injury than that of NMM. The MW-based golf-related injury index (MWGII), proposed as the ratio of the contribution of JAV to MW to that of NMM, at the LJ (1.55) was significantly greater than those at other joints ( < 1.05). This generally corresponds to the most frequent occurrence of golf-related injuries around the lumbar spine. Therefore, both MW and MWGII should be considered when investigating the biomechanical causes of lumbar spine injuries.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.766725 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:16:p:1801-1808

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2013.766725

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:16:p:1801-1808