Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach
Michele Marino and
Giuseppe Vairo
Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 1, 11-30
Abstract:
Mechanobiology of cells in soft collagenous tissues is highly affected by both tissue response at the macroscale and stress/strain localization mechanisms due to features at lower scales. In this paper, the macroscale mechanical behaviour of soft collagenous tissues is modelled by a three-level multiscale approach, based on a multi-step homogenisation technique from nanoscale up to the macroscale. Nanoscale effects, related to both intermolecular cross-links and collagen mechanics, are accounted for, together with geometric nonlinearities at the microscale. Moreover, an effective submodelling procedure is conceived in order to evaluate the local stress and strain fields at the microscale, which is around and within cells. Numerical results, obtained by using an incremental finite element formulation and addressing stretched tendinous tissues, prove consistency and accuracy of the model at both macroscale and microscale, confirming also the effectiveness of the multiscale modelling concept for successfully analysing physiopathological processes in biological tissues.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.658043 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:1:p:11-30
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2012.658043
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().