Meshless algorithm for soft tissue cutting in surgical simulation
Xia Jin,
Grand Roman Joldes,
Karol Miller,
King H. Yang and
Adam Wittek
Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 7, 800-811
Abstract:
Computation of soft tissue mechanical responses for surgery simulation and image-guided surgery has been dominated by the finite element (FE) method that utilises a mesh of interconnected elements as a computational grid. Shortcomings of such mesh-based discretisation in modelling of surgical cutting include high computational cost and the need for re-meshing in the vicinity of cutting-induced discontinuity. The meshless total Lagrangian adaptive dynamic relaxation (MTLADR) algorithm we present here does not exhibit such shortcomings, as it relies on spatial discretisation in a form of a cloud of nodes. The cutting-induced discontinuity is modelled solely through changes in nodal domains of influence, which is done through efficient implementation of the visibility criterion using the level set method. Accuracy of our MTLADR algorithm with visibility criterion is confirmed against the established nonlinear solution procedures available in the commercial FE code Abaqus.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.716829 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:7:p:800-811
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2012.716829
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().