EconPapers    
Economics at your fingertips  
 

An automatic approach for calibrating dielectric bone properties by combining finite-element and optimization software tools

Yukun Su, Daniel Kluess, Wolfram Mittelmeier, Ursula van Rienen and Rainer Bader

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 12, 1306-1313

Abstract: The dielectric properties of human bone are one of the most essential inputs required by electromagnetic stimulation for improved bone regeneration. Measuring the electric properties of bone is a difficult task because of the complexity of the bone structure. Therefore, an automatic approach is presented to calibrate the electric properties of bone. The numerical method consists of three steps: generating input from experimental data, performing the numerical simulation, and calibrating the bone dielectric properties. As an example, the dielectric properties at 20 Hz of a rabbit distal femur were calibrated. The calibration process was considered as an optimization process with the aim of finding the optimum dielectric bone properties that match most of the numerically calculated simulation and experimentally measured data sets. The optimization was carried out automatically by the optimization software tool iSIGHT in combination with the finite-element solver COMSOL Multiphysics. As a result, the optimum conductivity and relative permittivity of the rabbit distal femur at 20 Hz were found to be 0.09615 S/m and 19522 for cortical bone and 0.14913 S/m and 1561507 for cancellous bone, respectively. The proposed method is a potential tool for the identification of realistic dielectric properties of the entire bone volume. The presented approach combining iSIGHT with COMSOL is applicable to, amongst others, designing implantable electro-stimulative devices or the optimization of electrical stimulation parameters for improved bone regeneration.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1131980 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:12:p:1306-1313

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1131980

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:12:p:1306-1313