Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization
Emiliano Pablo Ravera,
Marcos José Crespo and
Ariel Andrés Antonio Braidot
Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 1, 1-12
Abstract:
Clinical gait analysis provides great contributions to the understanding of gait patterns. However, a complete distribution of muscle forces throughout the gait cycle is a current challenge for many researchers. Two techniques are often used to estimate muscle forces: inverse dynamics with static optimization and computer muscle control that uses forward dynamics to minimize tracking. The first method often involves limitations due to changing muscle dynamics and possible signal artefacts that depend on day-to-day variation in the position of electromyographic (EMG) electrodes. Nevertheless, in clinical gait analysis, the method of inverse dynamics is a fundamental and commonly used computational procedure to calculate the force and torque reactions at various body joints. Our aim was to develop a generic musculoskeletal model that could be able to be applied in the clinical setting. The musculoskeletal model of the lower limb presents a simulation for the EMG data to address the common limitations of these techniques. This model presents a new point of view from the inverse dynamics used on clinical gait analysis, including the EMG information, and shows a similar performance to another model available in the OpenSim software. The main problem of these methods to achieve a correct muscle coordination is the lack of complete EMG data for all muscles modelled. We present a technique that simulates the EMG activity and presents a good correlation with the muscle forces throughout the gait cycle. Also, this method showed great similarities whit the real EMG data recorded from the subjects doing the same movement.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.980820 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:1:p:1-12
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2014.980820
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().