EconPapers    
Economics at your fingertips  
 

Finite element analysis of titanium alloy-graphene based mandible plate

Prashant Jindal, Frank Worcester, Kartikeya Walia, Anand Gupta and Philip Breedon

Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, issue 3, 324-330

Abstract: Titanium alloy based maxillofacial plates and implants are widely used in fracture treatment and reconstructions. Filler materials Graphene Nanoplatlets(GNPs) were used in a Titanium alloy maxillofacial plate and a Finite Element Model (FEM) was designed to reconstruct a fractured human mandible. Both 50N and 500N bite forces were applied on the mandible and stress distribution using Von mises failure theory across the plate sections was analyzed. A pure plate was critically stressed at a section near the mandible fracture region for a Von mises stress of nearly 27.5GPa while this stress reduced by nearly 10–22% with the presence of minor composition of GNPs in the plate. GNPs orientation in parallel (21.1 GPa) to the plate axis were more effective in comparison to other orientations(90°, 45° and 135°) and the location variation of these GNPs along the plate had no significant effect on the stress distribution. The fatigue analyses showed that, under these stresses and forces the plate with GNP was able to endure for nearly 7000 days, while the pure Titanium plate could fail by fatigue in approximately 70 days. Hence, presence of minor compositions of GNPs could enhance endurance life of the Titanium plate by reducing stress concentrations at critical sections of the plate.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2018.1555244 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:22:y:2019:i:3:p:324-330

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2018.1555244

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:22:y:2019:i:3:p:324-330