A compressible anisotropic hyperelastic model with I5 and I7 strain invariants
Mn Wang and
Fj Liu
Computer Methods in Biomechanics and Biomedical Engineering, 2020, vol. 23, issue 16, 1277-1286
Abstract:
It is obvious that the mechanical properties of arterial tissue include compressibility, anisotropy, and the fact that the out-of-plane shear modulus is smaller than the shear modulus in the plane of the fibers. However, the last point is rarely considered when it comes to compressible anisotropic hyperelastic models. In order to acquire different shear moduli, we propose a modified hyperelastic model including the influence of strain invariants I5 and I7. The convergence and correctness of this model are verified through the hydrostatic tension test, uniaxial tension test, and shear deformation test. It turns out that our model correctly predicts an anisotropic response and volume change to hydrostatic tensile test and the fact that the out-of-plane shear modulus is always smaller than the shear modulus in the plane of the fibers in shear deformation test. We conclude that the influence of strain invariants I5 and I7 is great, especially in the shear deformation, so that it is necessary to include I5 and I7 in the compressible anisotropic hyperelastic model.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1795839 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:23:y:2020:i:16:p:1277-1286
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2020.1795839
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().