Application of multi-component fluid model in studies of the origin of skin burns during electrosurgical procedures
Marija Radmilović-Radjenović,
Martin Sabo and
Branislav Radjenović
Computer Methods in Biomechanics and Biomedical Engineering, 2021, vol. 24, issue 13, 1409-1418
Abstract:
This paper reports on safety challenges regarding spark created when the applied electric field exceeds the dielectric breakdown strength as a source of complication during electrosurgery. Despite the unquestionable benefits of electrosurgery, such as minimal chances of infection and fast recovery time, the interaction of the electrosurgical tool with the tissue may result in tissue damage and force feedback to the tool. Some risks of complications often depend on a surgeon's knowledge of instruments and safety aspects of technical equipment that can be eliminated by clarifying the causation and conditions of their development. Current trends in electrosurgery include computational algorithms and methods to control the effect of delivered energy to the patient. For this study, calculations were performed by using the COMSOL simulation package based on a multi-component plasma fluid model. The emphasis is put on conditions that lead to the breakdown of the dielectric medium. It was found that breakdown occurs most easily when both electrodes are cylindrical. For configurations with one or two spherical electrodes, breakdown voltages are higher up to 25% and 48%, respectively. With decreasing the cathode radius, the breakdown voltage may decrease even to 41%. On the other hand, the temperature increase lowers the breakdown voltage. Also, electrical asymmetries appear to be a response to the non-symmetry of the electric field between the electrodes causing differences in the breakdown voltage between 36% and 70%. The results presented here could be very useful for the design of surgical devices to prevent potential complications of electrosurgical procedures.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1890721 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:24:y:2021:i:13:p:1409-1418
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2021.1890721
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().