Effect of foam densification and impact velocity on the performance of a football helmet using computational modeling
Samuel T. Mills,
Trevor S. Young,
Lillian S. Chatham,
Sourav Poddar,
R. Dana Carpenter and
Christopher M. Yakacki
Computer Methods in Biomechanics and Biomedical Engineering, 2021, vol. 24, issue 1, 21-32
Abstract:
The NFL recently released validated helmet-impact models to study the performance of currently used helmets. This study used the model of a Riddell Speed Classic helmet to determine the influence of the properties of protective foam padding on acceleration and deformation at two common impact locations to cause concussions. The performance of the helmet was measured before and after manipulating the material properties of the protective foam liner material using FEA software. The densification strain was adjusted by using the scale factor tool in LS-DYNA to create four material categories – soft, standard, stiff, and rigid. The helmet was tested under side and rear impacts using the four material properties at 2.0, 5.5, 7.4, 9.3 and 12.3 m/s impact speeds using the NOCSAE linear impactor model. This study suggests that the standard foam material compresses to a range that could be considered to have “bottomed out” at impact speeds at 5.5 m/s for side impacts. Despite testing a wide range of material properties, the measured accelerations did not vary dramatically across material properties. Rather, impact speed played the dominant role on measured acceleration. This is the first study to demonstrate how open-source impact models can be used to run a design of experiments and investigate the role between different materials used inside a helmet and football helmet performance.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1807015 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:24:y:2021:i:1:p:21-32
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2020.1807015
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().