Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model
Hesam Hoursan,
Farzam Farahmand and
Mohammad Taghi Ahmadian
Computer Methods in Biomechanics and Biomedical Engineering, 2022, vol. 25, issue 1, 27-39
Abstract:
A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of the hyperelastic model was used to introduce the statistical DTI data into the representative volume element. The FA-informed statistical micromechanical models of three characteristic regions of white matter were developed by deriving the corresponding probabilistic measures of FA variations. Comparison of the model predictions and experimental data indicated a good agreement, suggesting that the model could reasonably capture the inter-regional heterogeneity of white matter. Moreover, the standard deviations of experimental results correlated well with the model predictions, suggesting that the model could capture the intra-regional mechanical heterogeneity for different regions of white matter.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1927000 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:25:y:2022:i:1:p:27-39
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2021.1927000
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().