Fatigue strength and life prediction of lower limb venous stents under three-stage loading conditions
Haiquan Feng,
Jinming Hu,
Guanyu Wang,
Juan Su and
Lin Wang
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 10, 1264-1277
Abstract:
After the implantation of lower limb artery stents, the complex loading conditions imposed on the limb can lead to fatigue failure, which may induce inflammation and restenosis. To investigate the effect of multi-axial loading conditions on the fatigue performance of stents, five stents, namely APsolute Pro (APbott Vascular, USA), Complete SE (Medtronic, USA), Protégé EverFlex (PE3, USA), Pulsar-35 (Biotronik, Germany), and E-luminexx-B (Bard, USA), were analyzed based on the finite element method (FEM). Besides, their fatigue strength was determined under three levels of loading conditions, including tension-bending-torsion and compression-bending-torsion. Based on that, the fatigue life of these stents was predicted. The results showed that based on the nominal stress method, tension-bending-torsion loading had a more significant impact on the fatigue life of stents than compression-bending-torsion loading. Besides, two different types of initial cracks were analyzed by the fracture mechanics method. The results suggested that both the initial crack and the external load were the main causes of stent fatigue fractures. Compared with the loading nature, the influence of the initial crack on stent fatigue life was more significant. Under the same loading condition, the APsolute Pro stent had the longest fatigue life, while the E-luminexx-B stent had the shortest. Moreover, the mechanism of stent fatigue failure was revealed by exploring the fatigue performance and life prediction of stents under complex loading conditions. These findings have important implications for improving the structural design of stents and their clinical selection.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2238100 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:10:p:1264-1277
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2238100
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().