Comparison between guide plate navigation and virtual fixtures in robot-assisted osteotomy
Qing Yang,
Xisheng Weng,
Chunjie Xia,
Chao Shi,
Jixuan Liu,
Chendi Liang,
Yanzhen Liu and
Yu Wang
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 11, 1387-1397
Abstract:
To verify the advantages of Virtual Fixtures (VFs) by comparing the result of guide plate navigation (GPN) and VFs in robot-assisted osteotomy. Robot-assisted surgery has been extensively applied in traditional orthopedic surgeries. It fundamentally improves surgeries’ cutting accuracy. In addition, many key techniques have been applied in bone cutting to increase the procedure’s safety in various ways. In this paper, two robot-assisted osteotomy methods are proposed. Three operators with no osteotomy experience performed plane cutting with the assistance of a robot. GPN and VFs were applied to assist the Sawbones cutting. Each operator has five attempts using each method to perform bone cutting, distance errors and angular errors were recorded. The advantage of Sawbones is that there is no influence from soft tissues and blood. It can give a more precise measurement. The results show that both methods have high accuracy with the robot’s assistance. VFs have higher accuracy in comparison with GPN. With GPN, the mean distance and angular error of the three operators were 2.974 ± 0.282 mm and 4.737 ± 0.254°. With VFs, the mean range and angular error of the three operators were 1.857 ± 0.349 mm and 2.24 ± 0.123°, respectively. VFs limited the robot’s end in the planned area, increasing the accuracy and safety of robot-assisted osteotomy.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2243359 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:11:p:1387-1397
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2243359
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().