Learning classifiers in clustered data: BCI pattern recognition model for EEG-based human emotion recognition
Raoufeh Kheirabadi and
Hesam Omranpour
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 12, 1649-1663
Abstract:
Evidence suggests that human emotions can be detected using Electroencephalography (EEG) brain signals. Recorded EEG signals, due to their large size, may not initially perform well in classification. For this reason, various feature selection methods are used to improve the performance of classification. The nature of EEG signals is complex and unstable. This article uses the Empirical Mode Decomposition (EMD) method, which is one of the most successful methods in analyzing these signals in recent years. In the proposed model, first, the EEG signals are decomposed using EMD into the number of Intrinsic Mode Functions (IMF), and then, the statistical properties of the IMFs are extracted. To improve the performance of the proposed model, using the RBF kernel and Least Absolute Shrinkage and Selection Operator (LASSO) feature selection, an effective subset of the features that have changed the space is selected. The data are then clustered, and finally, each cluster is classified with a decision tree and random forest and KNN. The purpose of clustering is to increase the accuracy of the classification, which is achieved by focusing each cluster on a limited number of classes. This experiment was performed on the DEAP dataset. The results show that the proposed model with 99.17% accuracy could perform better than recent research such as deep learning and show good performance. In the latest years, with the development of the BCI system, the demand for recognizing emotions based on EEG has increased. We provide a method for classifying clustered data that is efficient for high accuracy.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2252953 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:12:p:1649-1663
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2252953
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().