EconPapers    
Economics at your fingertips  
 

Enhancing the efficacy of depression detection system using optimal feature selection from EHR

Sweta Bhadra and Chandan Jyoti Kumar

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 2, 222-236

Abstract: Diagnosing depression at an early stage is crucial and majorly depends on the clinician’s skill. The present work aims to develop an automated tool for assisting the diagnostic procedure of depression using multiple machine-learning techniques. The dataset of sample size 4184 used in this study contains biometric and demographic information of individuals with or without depression, accessed from the University of Nice Sophia-Antipolis. The Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are used for classifying the depressed from the control group. To enhance the computational efficiency, various feature selection algorithms like Recursive Feature Elimination (RFE), Mutual Information (MI) and three bio-inspired techniques, viz. Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Firefly Algorithms (FA) have been incorporated. To enhance the feature selection process further, majority voting is carried out in all possible combinations of three, four and five feature selection techniques. These feature selection techniques bring down the feature set size significantly to a mean of 33 from the actual size of 61 which is a reduction of 45.90%. The classification accuracy of the enhanced model varies between 84.18% and 88.46%, which is a significant improvement in performance as compared to the pre-existing models (83.76–85.89%). The proposed predictive models outperform the pre-existing classification models without feature selection and thereby enhancing both the performance and efficiency of the diagnostic process.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2181660 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:2:p:222-236

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2181660

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:2:p:222-236