Investigation of Bruxism wear behavior of titanium alloy biomaterials; experimental and 3D finite element simulation
Efe Çetin Yilmaz
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 11, 1771-1782
Abstract:
Bruxism can be defined as the process of direct contact with teeth and dental materials with an involuntary jaw-tightening movement. In this process, teeth and dental materials can be exposed to various damage mechanisms. This study aims to realize the mechanism of bruxism with finite element analysis and in vitro rotating chewing movement analysis. Within the scope of the study, cp-Ti, Ti-5Zr, and Ti-5Ta materials were subjected to wear tests in the finite element analysis and in vitro rotating chewing movement method under the determined Bruxism chewing test conditions. Test specimens with cylindrical geometry were exposed to a direct every-contact wear mechanism for 30 s under 150 N bruxism chewing bite force. The bruxism chewing cycle continued for 300 min at a frequency of 2 Hz. Microanalysis of the wear surfaces of the samples after the experimental study was carried out with Scanning Electron Microscopy. The results obtained within the scope of this study showed that the Bruxism wear resistance increased by adding zirconium and tantalum to pure titanium material. This result shows that pure titanium material, which is known to have poor wear resistance, can be improved with Zr and Ta alloys. It is clinically important that the success rate in the treatment process increases with the increase in wear resistance. However, the micro-cracks observed in the microstructure may have occurred in the sub-surface, which is a show of the fatigue wear mechanism.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2339476 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:11:p:1771-1782
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2339476
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().