Neural harmony: revolutionizing thyroid nodule diagnosis with hybrid networks and genetic algorithms
H. Summia Parveen,
S. Karthik and
Kavitha M S
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 11, 1818-1835
Abstract:
In the contemporary world, thyroid disease poses a prevalent health issue, particularly affecting women’s well-being. Recognizing the significance of maternal thyroid (MT) hormones in fetal neurodevelopment during the first half of pregnancy, this study introduces the HNN-GSO model. This groundbreaking hybrid approach, utilizing the MT dataset, integrates ResNet-50 and Artificial Neural Network (ANN) within a Glow-worm Swarm Optimization (GSO) framework for optimal parameter tuning. With a comprehensive methodology involving dataset preprocessing and Genetic Algorithm (GA) for feature selection, our model leverages ResNet-50 for feature extraction and ANN for classification tasks. Implemented in Python, the HNN-GSO model outperforms existing models, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), ResNet, GoogleNet, and ANN, achieving an impressive accuracy rate of 98%. This success underscores the effectiveness of our approach in complex classification tasks within machine learning (ML) and pattern recognition, specifically tailored to the Thyroid Ultrasound Images (TUI) Dataset. To provide a comprehensive understanding of performance, additional statistical measures such as precision, recall, and F1 score were considered. The HNN-GSO model consistently outperformed competitors across these metrics, showcasing its superiority in MT classification. The HNN-GSO model seamlessly combines ResNet-50's feature extraction, ANN's classification robustness, and GSO's optimization for unparalleled performance. This research offers a promising framework for advancing ML methodologies, enhancing accuracy, and efficiency in classification tasks related to MT health.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2341969 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:11:p:1818-1835
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2341969
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().