EconPapers    
Economics at your fingertips  
 

Authentication with a one-dimensional CNN model using EEG-based brain-computer interface

Ahmed Yassine Ferdi and Abdelkader Ghazli

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 13, 1969-1980

Abstract: Brain-computer interface (BCI) technology uses electroencephalogram (EEG) signals to create a direct interaction between the human body and its surroundings. Motor imagery (MI) classification using EEG signals is an important application that can help a rehabilitated or motor-impaired stroke patient perform certain tasks. Robust classification of these signals is an important step toward making the use of EEG more practical in many applications and less dependent on trained professionals. Deep learning methods have produced impressive results in BCI in recent years, especially with the availability of large electroencephalography (EEG) data sets. Dealing with EEG-MI signals is difficult because noise and other signal sources can interfere with the electrical amplitude of the brain, and its generalization ability is limited, so it is difficult to improve EEG classifiers. To address these issues, this paper presents a methodology based on one-dimensional convolutional neural networks (1-D CNN) for motor imagery (MI) recognition for the right hand, left hand, feet, and sedentary task. The proposed model is a lightweight model with fewer parameters and has an accuracy of 91.75%. Then, in an innovative exploitation of the four output classes, there is an idea that allows people with disabilities who are deprived of security measures, such as entering a secret code, to use the output classification, such as password codes. It is also an idea for a unique authentication system that is more secure and less vulnerable to theft or the like for a healthy person at the same time.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2355490 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:13:p:1969-1980

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2024.2355490

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-11-05
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:13:p:1969-1980