Analysis of mechanical characteristics and permeability of TPMS and Voronoi porous structure for bone scaffold
Maimaitijiang Mamuti,
Long Chao and
Zongjun Tian
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 14, 2111-2124
Abstract:
Bionic porous structure has been widely used in the field of bone implantation, because it can imitate the topological structure of bone, reduce the elastic modulus of metal bone implantation, and meet the mechanical properties and material transmission characteristics after implantation. This paper mainly studies the effects of different bionic porous structures on the mechanical and material transport properties of bone scaffolds. Firstly, under the same porosity condition, 12 groups of bionic porous structures with different shapes were designed, including G, P, D, I-type three period minimal surface (TPMS) and Voronoi porous structures with different irregularities. Then uses ABAQUS to carry out mechanical finite element simulation on different bionic porous structures, and uses Ti-6Al-4V alloy as forming material, uses laser powder bed fusion technology (LPBF) to prepare the scaffold, then carries out compression experiments. At the same time, COMSOL software is used to simulate the flow characteristics, analyze the permeability characteristics, and verified through cell experiment in vivo. The results show that the mechanical and permeability are different with vary scaffolds. In terms of topology, the morphological characteristics of TPMS are similar to trabecular bone, its compressive strength is relatively strong. Voronoi scaffold has lower elastic modulus, which can provide sufficient mechanical support while reducing stress shielding. In addition, the permeability of TPMS scaffold is better than Voronoi scaffold, which is helpful to promote cell proliferation and bone ingrowth. These bionic porous structures have their own advantages. Therefore, when designing porous structures for bone implantation, it is necessary to select the appropriate porous structure according to different bone implantation requirements. The research will help promote the clinical application of porous structures in the field of bone implantation, and provide theoretical support for the exploration of bone implantation structure design.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2358378 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:14:p:2111-2124
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2358378
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().