A fine-tuning deep residual convolutional neural network for emotion recognition based on frequency-channel matrices representation of one-dimensional electroencephalography
Jichi Chen,
Yuguo Cui,
Cheng Qian and
Enqiu He
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 3, 303-313
Abstract:
Emotion recognition (ER) plays a crucial role in enabling machines to perceive human emotional and psychological states, thus enhancing human-machine interaction. Recently, there has been a growing interest in ER based on electroencephalogram (EEG) signals. However, due to the noisy, nonlinear, and nonstationary properties of electroencephalography signals, developing an automatic and high-accuracy ER system is still a challenging task. In this study, a pretrained deep residual convolutional neural network model, including 17 convolutional layers and one fully connected layer with transfer learning technique in combination frequency-channel matrices (FCM) of two-dimensional data based on Welch power spectral density estimate from the one-dimensional EEG data has been proposed for improving the ER by automatically learning the underlying intrinsic features of multi-channel EEG data. The experiment result shows a mean accuracy of 93.61 ± 0.84%, a mean precision of 94.70 ± 0.60%, a mean sensitivity of 95.13 ± 1.02%, a mean specificity of 91.04 ± 1.02%, and a mean F1-score of 94.91 ± 0.68%, respectively using 5-fold cross-validation on the DEAP dataset. Meanwhile, to better explore and understand how the proposed model works, we noted that the ranking of clustering effect of FCM for the same category by employing the t-distributed stochastic neighbor embedding strategy is: softmax layer activation is the best, the middle convolutional layer activation is the second, and the early max pooling layer activation is the worst. These findings confirm the promising potential of combining deep learning approaches with transfer learning techniques and FCM for effective ER tasks.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2286918 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:3:p:303-313
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2286918
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().