Development of a three-dimensional muscle-driven lower limb model developed using an improved CFD-FE method
Luming Feng,
Qinglin Duan,
Rongwu Lai,
Wenhang Liu,
Xiaoshuang Song and
Yongtao Lyu
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 3, 314-325
Abstract:
Analysis of the musculoskeletal movements (gait analysis) is needed in many scenarios. The in vivo method has some difficulties. For example, recruiting human subjects for the gait analysis is challenging due to many issues. In addition, when plenty of subjects are required, the follow-up experiments take a long period and the dropout of subjects always occurs. An efficient and reliable in silico simulation platform for gait analysis has been desired for a long time. Therefore, a technique using three-dimensional (3D) muscle modeling to drive the 3D musculoskeletal model was developed and the application of the technique in the simulation of lower limb movements was demonstrated. A finite element model of the lower limb with anatomically high fidelity was developed from the MRI data, where the main muscles, the bones, the subcutaneous tissues, and the skin were reconstructed. To simulate the active behavior of 3D muscles, an active, fiber-reinforced hyperelastic muscle model was developed using the user-defined material (VUMAT) model. Two typical movements, that is, hip abduction and knee lifting, were simulated by activating the responsible muscles. The results show that it is reasonable to use the improved CFD-FE method proposed in the present study to simulate the active contraction of the muscle, and it is feasible to simulate the movements by activating the relevant muscles. The results from the present technique closely match the physiological scenario and thus the technique developed has a great potential to be used in the in silico human simulation platform for many purposes.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2286921 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:3:p:314-325
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2286921
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().