Nested genetic algorithm-based classifier selection and placement in multi-level ensemble framework for effective disease diagnosis
Srinivas Arukonda and
Ramalingaswamy Cheruku
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 4, 487-510
Abstract:
Effective disease diagnosis is a critical unmet need on a global scale. The intricacies of the numerous disease mechanisms and underlying symptoms make developing a model for early diagnosis and effective treatment extremely difficult. Machine learning (ML) can help to solve some of these issues. Recently, various ensemble-based ML models have benefited clinicians in early diagnosis. However, one of the most difficult challenges in multi-level ensemble approaches is the classifier selection and their placement in the ensemble framework as it improves the overall performance. Let m classifiers have to select from n classifiers there are (nm) ways. Again, these (nm) possibilities can be arranged in m! ways. Finding the best m classifiers and their positions from total (nm)m! ways is a challenging and hard problem. To address this challenge, a dynamic three-level ensemble framework is proposed. A nested Genetic Algorithm (GA) and ensemble-based fitness function are employed to optimize the classifier selection and their placement in a three-level ensemble framework. Our approach used eleven classifiers and chose seven classifiers by maximizing the fitness function. The proposed model experiments on 12 disease datasets. The proposed model outperformed in terms of accuracy, F1, and G-measure on the Chronic Kidney Disease (CKD) dataset is 0.987, 0.988, and 0.989, respectively. In terms of AUC on the Heart disease dataset (HDD) is 0.998 and in terms of recall on the Hypothyroid disease dataset (HyDD) is 0.988. In addition, the proposed model superiority is statically evaluated by Wilcoxon-Signed-Rank (WSR) test compared with other ensemble models, such as random forest (RF), bagging classifier (BC), XGBoost (XGB), and gradient boost classifier (GBC) with probability value p
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2294264 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:4:p:487-510
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2294264
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().