EconPapers    
Economics at your fingertips  
 

Treatment prediction with machine learning in prostate cancer patients

Emre Alataş, Handan Tanyıldızı Kökkülünk, Hilal Tanyıldızı and Goksel Alcın

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 4, 572-580

Abstract: There are various treatment modalities for prostate cancer, which has a high incidence. In this study, it is aimed to make predictions with machine learning in order to determine the optimal treatment option for prostate cancer patients. The study included 88 male patients diagnosed with prostate cancer. Independent variables were determined as Gleason scores, biopsy, PSA, SUVmax, and age. Prostate cancer treatments, which are dependent variables, were determined as hormone therapy(n = 30), radiotherapy(n = 28) and radiotherapy + hormone therapy(n = 30). Machine learning was carried out in the Python with SVM, RF, DT, ETC and XGBoost. Metrics such as accuracy, ROC curve, and AUC were used to evaluate the performance of multi-class predictions. The model with the highest number of successful predictions was the XGBoost. False negative rates for hormone therapy, radiotherapy, and radiotherapy + hormone therapy treatments were, respectively, 12.5, 33.3, and 0%. The accuracy values were computed as 0.61, 0.83, 0.83, 0.72 and 0.89 for SVM, RF, DT, ETC and XGBoost, respectively. The three features that had the greatest influence on the treatment model prediction for prostate cancer with XGBoost were biopsy, Gleason score (3 + 3), and PSA level, respectively. According to the AUC, ROC and accuracy, it was determined that the XGBoost was the model that made the best estimation of prostate cancer treatment. Among the variables biopsy, Gleason score, and PSA level are identified as key variables in prediction of treatment.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2298364 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:4:p:572-580

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2298364

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:4:p:572-580