Optimizing the design of axial flow pump blades based on fluid characteristics
Lin Zhu,
Qifeng Yu,
Lu Yu,
Lizhen Wang,
Yuncong Yang,
Peng Shen and
Yubo Fan
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 8, 1270-1279
Abstract:
Non-physiological blood flow conditions in axial blood pumps lead to some complications, including hemolysis, platelet activation, thrombosis, and embolism. The high speed of the axial blood pump destroys large amounts of erythrocytes, thereby causing hemolysis and thrombosis. Thus, this study aims to reduce the vortices and reflux in the flow field by optimizing the axial blood pump. The axial blood pump and arterial flow field were modeled by the finite element method. The blood was assumed to be incompressible, turbulent, and Newtonian. The SST k–ω turbulence model was used. The frozen rotor method was also used to calculate the snapshot of motion. Many vortices and reflux exist in the flow field of the blood pump without optimization. The improved flow field had almost no vortex and reflux, thereby reducing the exposure time of blood. The optimized blood pump had little influence on the pressure field and shear stress field. The optimized blood pump mainly reduced the vortex, reflux, and the risk of thrombosis in the flow field. The flow field characteristics of an axial blood pump were studied, and the results showed the risk of thrombosis and hemolysis in the blood pump. In accordance with the relationship between the blade shape and the flow field, the blade of the blood pump was optimized, reducing the vortex and reflux of the flow field, as well as the risk of thrombosis.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2318011 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1270-1279
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2318011
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().