EconPapers    
Economics at your fingertips  
 

Seizure prediction based on improved vision transformer model for EEG channel optimization

Nan Qi, Yan Piao, Hao Zhang, Qi Wang and Yue Wang

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 9, 1450-1461

Abstract: Epileptic seizures are unpredictable events caused by abnormal discharges of a patient’s brain cells. Extensive research has been conducted to develop seizure prediction algorithms based on long-term continuous electroencephalogram (EEG) signals. This paper describes a patient-specific seizure prediction method that can serve as a basis for the design of lightweight, wearable and effective seizure-prediction devices. We aim to achieve two objectives using this method. The first aim is to extract robust feature representations from multichannel EEG signals, and the second aim is to reduce the number of channels used for prediction by selecting an optimal set of channels from multichannel EEG signals while ensuring good prediction performance. We design a seizure-prediction algorithm based on a vision transformer (ViT) model. The algorithm selects channels that play a key role in seizure prediction from 22 channels of EEG signals. First, we perform a time-frequency analysis of processed time-series signals to obtain EEG spectrograms. We then segment the spectrograms of multiple channels into many non-overlapping patches of the same size, which are input into the channel selection layer of the proposed model, named Sel-JPM-ViT, enabling it to select channels. Application of the Sel-JPM-ViT model to the Boston Children’s Hospital–Massachusetts Institute of Technology scalp EEG dataset yields results using only three to six channels of EEG signals that are slightly better that the results obtained using 22 channels of EEG signals. Overall, the Sel-JPM-ViT model exhibits an average classification accuracy of 93.65%, an average sensitivity of 94.70% and an average specificity of 92.78%.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2326097 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:9:p:1450-1461

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2024.2326097

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-08-05
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:9:p:1450-1461