Improving the best linear unbiased estimator for the scale parameter of symmetric distributions by using the absolute value of ranked set samples
Gang Zheng and
Mohammad Al-Saleh
Journal of Applied Statistics, 2003, vol. 30, issue 3, 253-265
Abstract:
Ranked set sampling is a cost efficient sampling technique when actually measuring sampling units is difficult but ranking them is relatively easy. For a family of symmetric location-scale distributions with known location parameter, we consider a best linear unbiased estimator for the scale parameter. Instead of using original ranked set samples, we propose to use the absolute deviations of the ranked set samples from the location parameter. We demonstrate that this new estimator has smaller variance than the best linear unbiased estimator using original ranked set samples. Optimal allocation in the absolute value of ranked set samples is also discussed for the estimation of the scale parameter when the location parameter is known. Finally, we perform some sensitivity analyses for this new estimator when the location parameter is unknown but estimated using ranked set samples and when the ranking of sampling units is imperfect.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476022000030039 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:30:y:2003:i:3:p:253-265
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/0266476022000030039
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().