EconPapers    
Economics at your fingertips  
 

Robustness of Inference for One-sample Problem with Correlated Observations

Perla Subbaiah and George Xia

Journal of Applied Statistics, 2007, vol. 34, issue 4, 471-486

Abstract: The inference about the population mean based on the standard t-test involves the assumption of normal population as well as independence of the observations. In this paper we examine the robustness of the inference in the presence of correlations among the observations. We consider the simplest correlation structure AR(1) and its impact on the t-test. A modification of the t-test suitable for this structure is suggested, and its effect on the inference is investigated using Monte Carlo simulation.

Keywords: Repeated measurements; AR(1) correlation structure (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701231906 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:4:p:471-486

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760701231906

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:34:y:2007:i:4:p:471-486