EconPapers    
Economics at your fingertips  
 

Adaptive normal reference bandwidth based on quantile for kernel density estimation

Jin Zhang

Journal of Applied Statistics, 2011, vol. 38, issue 12, 2869-2880

Abstract: Bandwidth selection is an important problem of kernel density estimation. Traditional simple and quick bandwidth selectors usually oversmooth the density estimate. Existing sophisticated selectors usually have computational difficulties and occasionally do not exist. Besides, they may not be robust against outliers in the sample data, and some are highly variable, tending to undersmooth the density. In this paper, a highly robust simple and quick bandwidth selector is proposed, which adapts to different types of densities.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.570322 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:12:p:2869-2880

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.570322

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:12:p:2869-2880