Comparison of treatment regimes with adjustment for auxiliary variables
Xinyu Tang and
Abdus S. Wahed
Journal of Applied Statistics, 2011, vol. 38, issue 12, 2925-2938
Abstract:
Treatment regimes are algorithms for assigning treatments to patients with complex diseases, where treatment consists of more than one episode of therapy, potentially with different dosages of the same agent or different agents. Sequentially randomized clinical trials are usually designed to evaluate and compare the effect of different treatment regimes. In such designs, eligible patients are first randomly assigned to receive one of the initial treatments. Patients meeting some criteria (e.g. no progressive disease) are then randomized to receive one of the maintenance treatments. Usually, the procedure continues until all treatment options are exhausted. Such multistage treatment assignment results in treatment regimes consisting of initial treatments, intermediate responses and second-stage treatments. However, methods for efficient analysis of sequentially randomized trials have only been developed very recently. As a result, earlier clinical trials reported results based only on the comparison of stage-specific treatments. In this article, we propose a model that applies to comparisons of any combination of any number of treatment regimes regardless of the number of stages of treatment adjusted for auxiliary variables. Contrasts of treatment regimes are tested using the Wald chi-square method. Both the model and Wald chi-square tests of contrasts are illustrated through a simulation study and an application to a high-risk neuroblastoma study to complement the earlier results reported on this study.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.573541 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:12:p:2925-2938
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.573541
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().