Tests for symmetry with right censoring
Ehab F. Abd-Elfattah and
Ronald W. Butler
Journal of Applied Statistics, 2011, vol. 38, issue 4, 683-693
Abstract:
Permutation tests for symmetry are suggested using data that are subject to right censoring. Such tests are directly relevant to the assumptions that underlie the generalized Wilcoxon test since the symmetric logistic distribution for log-errors has been used to motivate Wilcoxon scores in the censored accelerated failure time model. Its principal competitor is the log-rank (LGR) test motivated by an extreme value error distribution that is positively skewed. The proposed one-sided tests for symmetry against the alternative of positive skewness are directly relevant to the choice between usage of these two tests. The permutation tests use statistics from the weighted LGR class normally used for making two-sample comparisons. From this class, the test using LGR weights (all weights equal) showed the greatest discriminatory power in simulations that compared the possibility of logistic errors versus extreme value errors. In the test construction, a median estimate, determined by inverting the Kaplan--Meier estimator, is used to divide the data into a “control” group to its left that is compared with a “treatment” group to its right. As an unavoidable consequence of testing symmetry, data in the control group that have been censored become uninformative in performing this two-sample test. Thus, early heavy censoring of data can reduce the effective sample size of the control group and result in diminished power for discriminating symmetry in the population distribution.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903563643 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:4:p:683-693
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903563643
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().