Structural equation models for area health outcomes with model selection
Peter Congdon
Journal of Applied Statistics, 2011, vol. 38, issue 4, 745-767
Abstract:
Recent analyses seeking to explain variation in area health outcomes often consider the impact on them of latent measures (i.e. unobserved constructs) of population health risk. The latter are typically obtained by forms of multivariate analysis, with a small set of latent constructs derived from a collection of observed indicators, and a few recent area studies take such constructs to be spatially structured rather than independent over areas. A confirmatory approach is often applicable to the model linking indicators to constructs, based on substantive knowledge of relevant risks for particular diseases or outcomes. In this paper, population constructs relevant to a particular set of health outcomes are derived using an integrated model containing all the manifest variables, namely health outcome variables, as well as indicator variables underlying the latent constructs. A further feature of the approach is the use of variable selection techniques to select significant loadings and factors (especially in terms of effects of constructs on health outcomes), so ensuring parsimonious models are selected. A case study considers suicide mortality and self-harm contrasts in the East of England in relation to three latent constructs: deprivation, fragmentation and urbanicity.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903563692 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:4:p:745-767
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903563692
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().