Confidence interval procedures for proportions estimated by group testing with groups of unequal size adjusted for overdispersion
Shih-Chia Liu,
Kuo-Szu Chiang,
Cheng-Hsiang Lin and
Ting-Chin Deng
Journal of Applied Statistics, 2011, vol. 38, issue 7, 1467-1482
Abstract:
Group testing is a method of pooling a number of units together and performing a single test on the resulting group. Group testing is an appealing option when few individual units are thought to be infected and the cost of the testing is non-negligible. Overdispersion is the phenomenon of having greater variability than predicted by the random component of the model; this is common in the modeling of binomial distribution for group testing. The purpose of this paper is to provide a comparison of several established methods of constructing confidence intervals after adjusting for overdispersion. We evaluate and investigate each method in six different cases of group testing. A method based on the score statistic with correction for skewness is recommended. We illustrate the methods using two data sets, one from the detection of seed transmission and the other from serological testing for malaria.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.505953 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:7:p:1467-1482
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.505953
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().