Degradation data analysis for samples under unequal operating conditions: a case study on train wheels
Julio C. Ferreira,
Marta A. Freitas and
Enrico A. Colosimo
Journal of Applied Statistics, 2012, vol. 39, issue 12, 2721-2739
Abstract:
Traditionally, reliability assessment of devices has been based on life tests (LTs) or accelerated life tests (ALTs). However, these approaches are not practical for high-reliability devices which are not likely to fail in experiments of reasonable length. For these devices, LTs or ALTs will end up with a high censoring rate compromising the traditional estimation methods. An alternative approach is to monitor the devices for a period of time and assess their reliability from the changes in performance (degradation) observed during the experiment. In this paper, we present a model to evaluate the problem of train wheel degradation, which is related to the failure modes of train derailments. We first identify the most significant working conditions affecting the wheel wear using a nonlinear mixed-effects (NLME) model where the log-rate of wear is a linear function of some working conditions such as side, truck and axle positions. Next, we estimate the failure time distribution by working condition analytically. Point and interval estimates of reliability figures by working condition are also obtained. We compare the results of the analysis via an NLME to the ones obtained by an approximate degradation analysis.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.725465 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:12:p:2721-2739
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.725465
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().