To move or not to move to find a new job: spatial duration time model with dynamic covariate effects
Göran Kauermann and
Nina Westerheide
Journal of Applied Statistics, 2012, vol. 39, issue 5, 995-1009
Abstract:
The aim of this paper is to show the flexibility and capacity of penalized spline smoothing as estimation routine for modelling duration time data. We analyse the unemployment behaviour in Germany between 2000 and 2004 using a massive database from the German Federal Employment Agency. To investigate dynamic covariate effects and differences between competing job markets depending on the distance between former and recent working place, a functional duration time model with competing risks is used. It is build upon a competing hazard function where some of the smooth covariate effects are allowed to vary with unemployment duration. The focus of our analysis is on contrasting the spatial, economic and individual covariate effects of the competing job markets and on analysing their general influence on the unemployed's re-employment probabilities. As a result of our analyses, we reveal differences concerning gender, age and education. We also discover an effect between the newly formed and the old West German states. Moreover, the spatial pattern between the considered job markets differs.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.634394 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:5:p:995-1009
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.634394
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().