Flexible parametric modelling of the hazard function in breast cancer studies
I. Ardoino,
E. M. Biganzoli,
C. Bajdik,
P. J. Lisboa,
P. Boracchi and
F. Ambrogi
Journal of Applied Statistics, 2012, vol. 39, issue 7, 1409-1421
Abstract:
In cancer research, study of the hazard function provides useful insights into disease dynamics, as it describes the way in which the (conditional) probability of death changes with time. The widely utilized Cox proportional hazard model uses a stepwise nonparametric estimator for the baseline hazard function, and therefore has a limited utility. The use of parametric models and/or other approaches that enables direct estimation of the hazard function is often invoked. A recent work by Cox et al . [6] has stimulated the use of the flexible parametric model based on the Generalized Gamma (GG) distribution, supported by the development of optimization software. The GG distribution allows estimation of different hazard shapes in a single framework. We use the GG model to investigate the shape of the hazard function in early breast cancer patients. The flexible approach based on a piecewise exponential model and the nonparametric additive hazards model are also considered.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.650685 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:7:p:1409-1421
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.650685
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().