Financial data modeling by Poisson mixture regression
S. Faria and
F. Gon�alves
Journal of Applied Statistics, 2013, vol. 40, issue 10, 2150-2162
Abstract:
In many financial applications, Poisson mixture regression models are commonly used to analyze heterogeneous count data. When fitting these models, the observed counts are supposed to come from two or more subpopulations and parameter estimation is typically performed by means of maximum likelihood via the Expectation--Maximization algorithm. In this study, we discuss briefly the procedure for fitting Poisson mixture regression models by means of maximum likelihood, the model selection and goodness-of-fit tests. These models are applied to a real data set for credit-scoring purposes. We aim to reveal the impact of demographic and financial variables in creating different groups of clients and to predict the group to which each client belongs, as well as his expected number of defaulted payments. The model's conclusions are very interesting, revealing that the population consists of three groups, contrasting with the traditional good versus bad categorization approach of the credit-scoring systems.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.807332 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:10:p:2150-2162
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.807332
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().