EconPapers    
Economics at your fingertips  
 

A new model selection procedure based on dynamic quantile regression

Wei Xiong and Maozai Tian

Journal of Applied Statistics, 2014, vol. 41, issue 10, 2240-2256

Abstract: In this article, we propose a novel robust data-analytic procedure, dynamic quantile regression (DQR), for model selection. It is robust in the sense that it can simultaneously estimate the coefficients and the distribution of errors over a large collection of error distributions even those that are heavy-tailed and may not even possess variances or means; and DQR is easy to implement in the sense that it does not need to decide in advance which quantile(s) should be gathered. Asymptotic properties of related estimators are derived. Simulations and illustrative real examples are also given.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.909787 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:10:p:2240-2256

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2014.909787

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:10:p:2240-2256