EconPapers    
Economics at your fingertips  
 

Product partition latent variable model for multiple change-point detection in multivariate data

Gift Nyamundanda, Avril Hegarty and Kevin Hayes

Journal of Applied Statistics, 2015, vol. 42, issue 11, 2321-2334

Abstract: The product partition model (PPM) is a well-established efficient statistical method for detecting multiple change points in time-evolving univariate data. In this article, we refine the PPM for the purpose of detecting multiple change points in correlated multivariate time-evolving data. Our model detects distributional changes in both the mean and covariance structures of multivariate Gaussian data by exploiting a smaller dimensional representation of correlated multiple time series. The utility of the proposed method is demonstrated through experiments on simulated and real datasets.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1029444 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:11:p:2321-2334

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1029444

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:42:y:2015:i:11:p:2321-2334