Heteroscedasticity diagnostics in varying-coefficient partially linear regression models and applications in analyzing Boston housing data
Jin-Guan Lin,
Yan-Yong Zhao and
Hong-Xia Wang
Journal of Applied Statistics, 2015, vol. 42, issue 11, 2432-2448
Abstract:
It is important to detect the variance heterogeneity in regression model because efficient inference requires that heteroscedasticity is taken into consideration if it really exists. For the varying-coefficient partially linear regression models, however, the problem of detecting heteroscedasticity has received very little attention. In this paper, we present two classes of tests of heteroscedasticity for varying-coefficient partially linear regression models. The first test statistic is constructed based on the residuals, in which the error term is from a normal distribution. The second one is motivated by the idea that testing heteroscedasticity is equivalent to testing pseudo-residuals for a constant mean. Asymptotic normality is established with different rates corresponding to the null hypothesis of homoscedasticity and the alternative. Some Monte Carlo simulations are conducted to investigate the finite sample performance of the proposed tests. The test methodologies are illustrated with a real data set example.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1043623 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:11:p:2432-2448
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1043623
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().