Extreme values identification in regression using a peaks-over-threshold approach
Tong Siu Tung Wong and
Wai Keung Li
Journal of Applied Statistics, 2015, vol. 42, issue 3, 566-576
Abstract:
The problem of heavy tail in regression models is studied. It is proposed that regression models are estimated by a standard procedure and a statistical check for heavy tail using residuals is conducted as a tool for regression diagnostic. Using the peaks-over-threshold approach, the generalized Pareto distribution quantifies the degree of heavy tail by the extreme value index. The number of excesses is determined by means of an innovative threshold model which partitions the random sample into extreme values and ordinary values. The overall decision on a significant heavy tail is justified by both a statistical test and a quantile-quantile plot. The usefulness of the approach includes justification of goodness of fit of the estimated regression model and quantification of the occurrence of extremal events. The proposed methodology is supplemented by surface ozone level in the city center of Leeds.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.978843 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:3:p:566-576
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.978843
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().