The sinh-normal/independent nonlinear regression model
Filidor Vilca,
Camila Borelli Zeller and
Gauss M. Cordeiro
Journal of Applied Statistics, 2015, vol. 42, issue 8, 1659-1676
Abstract:
The normal/independent family of distributions is an attractive class of symmetric heavy-tailed density functions. They have a nice hierarchical representation to make inferences easily. We propose the Sinh-normal/independent distribution which extends the Sinh-normal (SN) distribution [23]. We discuss some of its properties and propose the Sinh-normal/independent nonlinear regression model based on a similar setup of Lemonte and Cordeiro [18], who applied the Birnbaum-Saunders distribution. We develop an EM-algorithm for maximum likelihood estimation of the model parameters. In order to examine the robustness of this flexible class against outlying observations, we perform a simulation study and analyze a real data set to illustrate the usefulness of the new model.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1005059 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:8:p:1659-1676
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1005059
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().