EconPapers    
Economics at your fingertips  
 

Goodness-of-fit tests of generalized linear mixed models for repeated ordinal responses

Kuo-Chin Lin and Yi-Ju Chen

Journal of Applied Statistics, 2016, vol. 43, issue 11, 2053-2064

Abstract: Categorical longitudinal data are frequently applied in a variety of fields, and are commonly fitted by generalized linear mixed models (GLMMs) and generalized estimating equations models. The cumulative logit is one of the useful link functions to deal with the problem involving repeated ordinal responses. To check the adequacy of the GLMMs with cumulative logit link function, two goodness-of-fit tests constructed by the unweighted sum of squared model residuals using numerical integration and bootstrap resampling technique are proposed. The empirical type I error rates and powers of the proposed tests are examined by simulation studies. The ordinal longitudinal studies are utilized to illustrate the application of the two proposed tests.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1126568 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:11:p:2053-2064

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1126568

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:11:p:2053-2064