A comparison of ordinal logistic regression models using Classical and Bayesian approaches in an analysis of factors associated with diabetic retinopathy
K. Vaitheeswaran,
M. Subbiah,
R. Ramakrishnan and
T. Kannan
Journal of Applied Statistics, 2016, vol. 43, issue 12, 2254-2260
Abstract:
Estimating the risk factors of a disease such as diabetic retinopathy (DR) is one of the important research problems among bio-medical and statistical practitioners as well as epidemiologists. Incidentally many studies have focused in building models with binary outcomes, that may not exploit the available information. This article has investigated the importance of retaining the ordinal nature of the response variable (e.g. severity level of a disease) while determining the risk factors associated with DR. A generalized linear model approach with appropriate link functions has been studied using both Classical and Bayesian frameworks. From the result of this study, it can be observed that the ordinal logistic regression with probit link function could be more appropriate approach in determining the risk factors of DR. The study has emphasized the ways to handle the ordinal nature of the response variable with better model fit compared to other link functions.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1140725 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:12:p:2254-2260
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1140725
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().