EconPapers    
Economics at your fingertips  
 

CATANOVA for ordinal variables using orthogonal polynomials with different scoring methods

Pasquale Sarnacchiaro, Antonello D’Ambra and Luigi D’Ambra

Journal of Applied Statistics, 2016, vol. 43, issue 13, 2490-2502

Abstract: In the context of categorical data analysis, the CATegorical ANalysis Of Variance (CATANOVA) has been proposed to analyse the scheme variable-factor, both for nominal and ordinal variables. This method is based on the C statistic and allows to test the statistical significance of the tau index using its relationship with the C statistic. Through Emerson orthogonal polynomials (EOP) a useful decomposition of C statistic into bivariate moments (location, dispersion and higher order components) has been developed. In the construction of EOP the categories are replaced by scores, typically natural scores. In the paper, we provide an overview of the main scoring schemes focusing on the advantages and the statistical properties; we pay special attention to the impact of the chosen scores on the C statistic of CATANOVA and the graphical representations of doubly ordered non-symmetrical correspondence analysis. Through a real data example, we show the impact of the scoring schemes and we consider the RV and multidimensional scaling as tools to measure similarity among the results achieved with each method.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1184627 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:13:p:2490-2502

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1184627

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:13:p:2490-2502