EconPapers    
Economics at your fingertips  
 

Bayesian regression on non-parametric mixed-effect models with shape-restricted Bernstein polynomials

Jianhua Ding and Zhongzhan Zhang

Journal of Applied Statistics, 2016, vol. 43, issue 14, 2524-2537

Abstract: We develop a Bayesian estimation method to non-parametric mixed-effect models under shape-constrains. The approach uses a hierarchical Bayesian framework and characterizations of shape-constrained Bernstein polynomials (BPs). We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of BPs to ensure the desired shape constraints. The small sample properties of the Bayesian shape-constrained estimators across a range of functions are provided via simulation studies. Two real data analysis are given to illustrate the application of the proposed method.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1142940 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:14:p:2524-2537

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1142940

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2524-2537