An efficient correction to the density-based empirical likelihood ratio goodness-of-fit test for the inverse Gaussian distribution
Hadi Alizadeh Noughabi and
Albert Vexler
Journal of Applied Statistics, 2016, vol. 43, issue 16, 2988-3003
Abstract:
The inverse Gaussian (IG) distribution is widely used to model positively skewed data. An important issue is to develop a powerful goodness-of-fit test for the IG distribution. We propose and examine novel test statistics for testing the IG goodness of fit based on the density-based empirical likelihood (EL) ratio concept. To construct the test statistics, we use a new approach that employs a method of the minimization of the discrimination information loss estimator to minimize Kullback–Leibler type information. The proposed tests are shown to be consistent against wide classes of alternatives. We show that the density-based EL ratio tests are more powerful than the corresponding classical goodness-of-fit tests. The practical efficiency of the tests is illustrated by using real data examples.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1156657 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:16:p:2988-3003
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1156657
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().