EconPapers    
Economics at your fingertips  
 

Aranda-Ordaz quantile regression for student performance assessment

Hakim-Moulay Dehbi, Mario Cortina-Borja and Marco Geraci

Journal of Applied Statistics, 2016, vol. 43, issue 1, 58-71

Abstract: In education research, normal regression models may not be appropriate due to the presence of bounded variables, which may exhibit a large variety of distributional shapes and present floor and ceiling effects. In this article a class of quantile regression models for bounded response variables is developed. The one-parameter Aranda-Ordaz symmetric and asymmetric families of transformations are applied to address modelling issues that arise when estimating conditional quantiles of a bounded response variable whose relationship with the covariates is possibly nonlinear. This approach exploits the equivariance property of quantiles and aims at achieving linearity of the predictor. This offers a flexible model-based alternative to nonparametric estimation of the quantile function. Since the transformation is quantile-specific, the modelling takes into account the local features of the conditional distribution of the response variable. Our study is motivated by the analysis of reading performance in seven-year old children part of the Millennium Cohort Study.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1025724 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:1:p:58-71

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1025724

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:1:p:58-71