EconPapers    
Economics at your fingertips  
 

Bayesian analysis of covariance under inverse Gaussian model

Mohammadreza Meshkani, Afshin Fallah and Amir Kavousi

Journal of Applied Statistics, 2016, vol. 43, issue 2, 280-298

Abstract: This paper considers the problem of analysis of covariance (ANCOVA) under the assumption of inverse Gaussian distribution for response variable from the Bayesian point of view. We develop a fully Bayesian model for ANCOVA based on the conjugate prior distributions for parameters contained in the model. The Bayes estimator of parameters, ANCOVA model and adjusted effects for both treatments and covariates along with predictive distribution of future observations are developed. We also provide the essentials for comparing adjusted treatments effects and adjusted factor effects. A simulation study and a real world application are also performed to illustrate and evaluate the proposed Bayesian model.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1049131 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:2:p:280-298

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1049131

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:2:p:280-298