A variant of K nearest neighbor quantile regression
Xuejun Ma,
Xiaoqun He and
Xiaokang Shi
Journal of Applied Statistics, 2016, vol. 43, issue 3, 526-537
Abstract:
Compared with local polynomial quantile regression, K nearest neighbor quantile regression (KNNQR) has many advantages, such as not assuming smoothness of functions. The paper summarizes the research of KNNQR and has carried out further research on the selection of k , algorithm and Monte Carlo simulations. Additionally, simulated functions are Blocks, Bumps, HeaviSine and Doppler, which stand for jumping, volatility, mutagenicity slope and high frequency function. When function to be estimated has some jump points or catastrophe points, KNNQR is superior to local linear quantile regression in the sense of the mean squared error and mean absolute error criteria. To be mentioned, even high frequency, the superiority of KNNQR could be observed. A real data is analyzed as an illustration.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1070807 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:3:p:526-537
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1070807
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().