Quantile-adaptive variable screening in ultra-high dimensional varying coefficient models
Junying Zhang,
Riquan Zhang and
Zhiping Lu
Journal of Applied Statistics, 2016, vol. 43, issue 4, 643-654
Abstract:
The varying-coefficient model is an important nonparametric statistical model since it allows appreciable flexibility on the structure of fitted model. For ultra-high dimensional heterogeneous data it is very necessary to examine how the effects of covariates vary with exposure variables at different quantile level of interest. In this paper, we extended the marginal screening methods to examine and select variables by ranking a measure of nonparametric marginal contributions of each covariate given the exposure variable. Spline approximations are employed to model marginal effects and select the set of active variables in quantile-adaptive framework. This ensures the sure screening property in quantile-adaptive varying-coefficient model. Numerical studies demonstrate that the proposed procedure works well for heteroscedastic data.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1072141 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:4:p:643-654
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1072141
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().